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ABSTRACT 

We study the collective resonance phenomena in multiquark hadronic 

systems. Our analysis is essentially qualitative and based on an analogy 

to the well-known giant resonance phenomena in the nuclear matter. 

We consider the non-relativistic hydrodynamic equations for a 

two-component compressible fluid describing a system of quarks and 

antiquarks confined to the interior of the finite volume. The confinement 

properties as well as the relevant phase transitions are discussed and the 

frequences of the hydrodynamic oscillations of the system are derived. 

The problem of taking into account non-abelian colored gluon fields in 

the hydrodynamic equations describing motion of confined quarklantiquark 

fluids (“chrome-hydrodynamics”) is briefly discussed and the estimation 

of the effect of quark-gluon interactions on the energies of collective 

resonances is given. 

We speculate that the collective resonances or as we call them- 

the hadronic giant resonances may play an essential role in understanding 

the new resonances observed recently in efe- -annihilation and lepton pair 

production experiments in unexpectedly high mass intervals. Particularly, 

we show that the energies of the lowest hadronic giant resonances which 

could be seen in efe- annihilation (EO and E2 modes) lie at -4 GeV if 

a size of the confinement region is about 1 GeV-‘( - 0.2 fm). We should 

expect also an existence of colored collective states with energies of about 

the same order as for uncolored ones, which cannot be seen however in 
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the process of e+e- -annihilation into hadrons due to the color conservation 

in strong interactions. 

I. INTRODUCTION 

The hypothesis on the existence of the collective resonance phenomena 

in hadronic systems which could be the analogy to the giant resonances 

in nuclei has been introduced in paper (1). 

The main motive was the unexpected and intriguing at that time 

results of the experimental studies of e”e- -annihilation into hadrons which 

have shown the relatively large and growing with energy yield of hadrons. 

While contradicting the predictions of the old-fashioned naive parton 

model these results and the following discovery of the JI/ J-particles 

have stimulated an invention of new quantum numbers and corresponding 

them new degrees of freedom (charm, color etc. 1. The authors of the 

paper’ argued that for consistent explanation of the whole new events it 

might be useful to take into account an excitation of collective degrees of 

freedom beyond the elementary ones which mainly are treated by the 

parton model. 

Considering, in particular, quark-antiquark pairs as weakly coupled 

quasiparticles of hadronic matter produced in efe--annihilation, one may 

expect collective excitations to appear with the energies depending on a 

size of hadronic system, a radius of interaction between constituents etc. 
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Starting from the simplest variant of model of hydrodynamic 

oscillations of two incompressible fluids--one for quarks and another for 

antiquarks (compare with the Goldhaber-Teller model of the dipole giant 

2 
resonances in nuclei ), the authors of paper 

1 
derived a qualitative estimation 

on energies of collective hadronic resonances and have pointed to some 

feasible implications. 

The recent exciting discovery of the narrow resonance ~(6. 0) in 

+ - 
e e -production experiment 

3 
as well as the observation of the rich resonance 

+ - 
“mini-structure” at w 4 GeV in e e -anninilation into hadrons 4 give rise 

us to renew the discussion of the collective resonance phenomena. 

In this paper I shall study the hydrodynamic equations for the two- 

component compressible fluid describing a superdense system of quarks 

and antiquarks confined to the interior of the finite volume. Due to the 

assumption that masses of free unconfined quarks are very large, the 

consideration is mainly non-relativistic, and an analogy to the theory of 

the nuclear giant resonance5 plays an essential role. 

So the analogy of the well-known in nuclear physics “symmetry 

energy” potential is introduced which describes in our case fluctuations 

of energy near the point of the phase transition between the symmetric 

phase (all the local densities of quarks and antiquarks coincide) and the 

antisymmetric one (the local densities of quarks and antiquarks do not 

coincide ). 
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We argue that the confined symmetric phase is stable under fluctuations 

of the total quark-antiquark local density p = p q+Pq-’ SO the corresponding 

fluid can be considered as the incompressible one. 

The frequencies of the hydrodynamic oscillations in the confined 

hadronic phase are derived and the estimation on the energies of the 

corresponding “hadronic giant resonances” (T-series) is done bearing 

in mind to give a possible explanation of the “mini-structure” in the total 

cross-section of e+e--annihilation. 

Then we discuss a problem of incorporation of the gluon degrees of 

freedom in framework of the hydrodynamic approach. The first approximation 

to the so-called “chromodynamics”, describing motion of the quark-antiquark 

fluids in the presence of colored gluon fields is derived, and an estimation 

is given of an effect of quark-gluon interactions on the frequencies of 

collective resonances. 

II. GIANT RESONANCE PHENOMENA IN 
NUCLEAR AND HADRONIC PHYSICS 

The giant resonance phenomena in nuclear photoabsorption reactions 

give a good example of collective excitations in systems of strong interacting 

particles. In spite of the properties of hadronic matter composed of confined 

colored quarks and gluons should be different from those of nuclear matter, 

we believe that physics underlying the collective resonance phenomena 

in nuclear and hadronic matter is quite similar. For this reason, we begin 

first with short introduction to the nuclear giant resonance physics. 
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It was known for a long time that cross sections of inelastic photo- 

absorption reactions (when are measured with sufficiently bad resolution) 

on nuclei develop the broad peaks--named as the giant resonances--which 

positions slightly change with nucleus mass number somewhere between 

13 and 25 MeV. 5 (see Fig. 1) The rather big widths of the giant resonances 

as well as the strength of the absorption are considered as an indication 

of the collective nature of this effect, which cannot be explained by an 

excitation of single-particle degrees of freedom alone. 

The giant electric dipole resonance was described by Goldhaber 

and Teller as a collective oscillation of the protons as a whole against 

the neutrons as a whole in the nucleus. 
2 

So the large absorption of 

y-quanta with an electric field coupled to the dipole operator 

a’ = 1 ei+i + $$ tip - 8ni’,, 
i 

(2.1) 

where (Pp - r’,) is the relative center of mass coordinate vector of the 

protons and the neutrons, have to appear at photon energies determined 

by the frequencies of collective oscillations (El, I = 1 mode). 

A necessary requirement for an excitation of collective resonances 

is the so-called coherence condition 

h>> R (2.2) 

where h is a wave vector of the electric field, and R - A I” is a size of 

a nucleus. 
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Assuming that protons and neutrons inside nucleus can be considered 

as hard interpenetrating spheres and the total restoring force is proportional 

to the nuclear surface, Goldhaber and Teller derived the formula which 

determines the frequencies of collective oscillations 

(2.3) 

Here u. is an ‘I’ ionization” potential of nuclear matter and r --the radius 0 

of the nuclear forces. 

Obviously, there exist, in general, besides the dipole oscillations 

(El) the others, e. g. the monopole CEO), the quadrupole (E2), etc. 

oscillations, as illustrated in Fig. 2. 

Moreover, theories of nuclear matter show that collective oscillations 

can deal with all degrees of freedom such as spin and isotopic spin. 6 

So, there exist modes of vibrations in which protons with spin up and neutron 

with spin down move against protons with spin down and neutrons with 

spin up (spin-isospin mode), or in which nucleons with spin up move 

against nucleons with spin down (spin-wave model etc. (see illustration 

in Fig. 3). If one considers excitation of basic O+ states of nuclei this 

leads to Wigner’s supermultiplets of giant resonances which are degenerated 

under assumption of spin-isospin independence of nuclear forces. 
7 

An analysis of the giant resonance phenomena has shown that their 

most adequate description is given by a consideration of the classical 
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motion of two-fluid system which was initially applied to the nuclear 

problem by A. B. Migdal (1945)8 and by H. Steinwedel, et al. (1950). 
9 

The important idea of the hydrodynamical approach was that the restoring 

force is described by the potential energy density 

kq q X’Pp - PJ2/Po 

which arises from the so-called “symmetry energy” term 

ES 
= x(N - Z)2/A; x = 20 MeV 

in the semiempirical Weizsacker’s formula for nucleus masses 

E =E 
volume 

+E 
surface +Es + . . . 

(2.4) 

(2.5) 

(2.6) 

This more sophisticated theory gives for the frequency of nucleus dipole 

oscillations 

70 MeV 
-p- (2.7) 

(m” is an effective nucleon mass in nuclear matter), which can be compared 

with the result of the “hard sphere” model (2. 3 ). 

The question arises: whether the hadronic matter composed of quarks 

(and, apparently, of gluons) can develop collective oscillations feasible 

experimentally, as the nuclear matter do. 
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The main point of the paper’ was that the collective vibration of 

hadronic cluster produced via e+e- -annihilation could explain a rather 

big value as well as large-scale irregularities in the energy dependence 

of the total annihilation cross section. We shall study here along this 

line the hydrodynamic picture of collective resonance phenomena in 

multiquark hadronic systems. 

Consider the case when the numbers of quarks and antiquarks produced 

in high energy e+e- -annihilation are large enough, so that the qualitative 

two-fluid description can be applied to the corresponding hadronic system 

(with the quantum numbers of photon)(Fig. 4a). We base on an idea that 

for large excitations hadronic vacuum can be described qualitatively as 

a polarizable classic medium which will resonate on the frequencies 

determined collective vibrations of quark-antiquark fluids. To illustrate 

the idea we consider here the simplest version of the model of hydrodynamic 

oscillations of two spinless incompressible liquids--that of quarks and 

antiquarks placed in a spherical volume of a radius R. That is just 

analogy of the Goldhaber-Teller “hard sphere” model for the dipole 

proton-neutron oscillations in spherical nuclei. The model is based on 

the assumption that the restoring force, preventing the separation of 

centres of masses of two liquids, is proportional to the number of separated 

particles (shaded regions of Fig. 4b). 

For small oscillations the potential of restoring force is quadratic 

in 5, so the Hamiltonian describing these oscillations has the form 
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n n- 
H = ;Mqs c2+;ac2 

q q 
(2.9) 

The rigidity parameter rr is determined by the condition that at sufficiently 

large separations 5 = r. the restoring force potential succeeds the 

“ionization” energy of separated particles (see Fig. 5). i.e. 

1 2 
@Fro = Uo(dnq + 6n d 

(2.10) 

where 

dn 
6V 6V 

= 9 nq 7 ’ 6nT=nT. 7 

(2. Ii) 

6V=nRZro. for r. << R 

and U. is an “ionization” energy per one quark. 

Thus one has 

LY = 3/2Rr o . (nq + n$Uo (2.12) 

what gives for the frequency of the oscillations the following result: 
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This result has been used in paper’ for a possible explanation of the energy 

structure of the total annihilation cross section u~+~- - hadrons. 

Assuming that the correlation length r. is determined by the mass 

of quanta mediating the interaction between quarks (gluon? ), i. e. 

I/r0 _ m 
g 

(2.14) 

and the size of a hadronic system developing collective oscillations can 

be underestimated by the reversed total resonance width 

R,r -’ 
tot 

the authors of paper derived the relation 
10 

2 
wcoll 5 6m I 

g tot 

(2.15) 

(2.16) 

This says that for wcoll and mg of the order of few GeV/c2 the total 

resonance width should be of the order of few hundreds MeV or even more. 

Of course, this model gives only crude picture of the hadronic collective 

resonance. It ignores, for instance, a discussion of confinement properties 

of multiquark systems in the normal hadronic phase. 
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III. HYDRODYNAMIC OSCILLATIONS IN CONFINED 
HADRONIC MATTER 

Here we shall consider the hydrodynamic oscillations in hadronic 

matter confined to a finite volume. Due to an assumption that masses of 

free (unconfined) quarks are very large, we shall describe the hadronic 

matter by the non-relativistic hydrodynamic equations for a two-component 

fluid, with pq and p9 being the local densities of quark and antiquark 

components. We start from the Hamiltonian 

H = T+U (3. I) 

T = iM 
2 9 I dr(P V 2 + ppVq2); u = 

9 q 
dr% (3.2) 

where the potential energy is assumed for simplicity to be local and bilinear 

in the densities of the quark/antiquark fluids: 

z = Mq(pq + P$ + A(P 
2 

9 
+ p’) + 2Bpqpq (3. 3) 

By using 

A = x-g, B = -x - g < 0 (attraction) (3.4) 

we rewrite Eq. (3.3) as 

2 = (pq + pq)W 
9 

- U) +x (p 
9 

- I$ (3.5) 
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where u = g(p + p-)--the confinement potential, and the last term in 
9 9 

(3. 5) is the analogy of the”symmetry energy” potential in the nuclear 

theory. 

First of all we discuss the confinement properties of the hadronic 

systems described by the Hamiltonian (3. 5). Consider first the case 

pq 
= pH (“symmetric phase”) 

Obviously, the potential energy 

z=p(Mq-gp); p=p fp- 
q q 

has a finite limit for superheavy quarks, as M 
q 

-CD, for either 

P = 0 (free quark-antiquark vacuum) 

-1 
P = PO (confined hadronic phase) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

Let now 

pq # pq (“non-symmetric phase”) (3. IO) 

Consider, for instance, a single quark state. Due to Eq. (3.5) the energy 

of the state is equal 
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E (single quark1 = Mq + v (3.11) 

and hence one has to put g = x to avoid the dependence on the space volume 

V (no confinement for a single quark). 

In general, the states in the symmetric and the non-symmetric 

phases are split in energies by the amount of 

M 
4 

+ (nq - n$2/(nq + nq) = 

(3.12) 

= AE z E(symmetric) - E(non-symmetric) 

To the different kinds of phase transitions in hadronic matter there exist 

the different kinds of possible collective excitations. In our scheme one 

can discuss the following types of phase transitions: 

A. Symmetric phase tj Non-symmetric phase 
(Pq = Pql (P, # Pq) 

B. Confined phase H Nonconfined phase 
(XP = Mq) (XP f Mq) 

The corresponding collective excitations could be related with the 

hydrodynamical fluctuations of the ( p 
q 

- pq) or (pq + p-j local densities, 
q 

respectively, which should be considered in that case as compressible 

fluids. In terms of compressibility the situation can be summarized as 

follows: 
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(il 

(ii 1 

(iii) 

Compressible 1 Incompressible 

pq 4 
* P- p , 

9 
p$separately 

pq 
- Pq 

pq 
+ Pii. 

pq q 
+ P- pq - pF 

The first case (i) is just the “hard sphere” model developed b M. 

Goldhaber and E. Teller. The case (ii) corresponds to the fluctuations 

around the symmetric phase and its nuclear analogy was the most successful 

in description of the giant resonance phenomena in photonuclear reactions. 

The case (iii) corresponds to the fluctuations around the confined hadronic 

phase which is characterized by the definite value of the total local density 

of quarks and antiquarks p. = Mq/g. This type of fluctuations raises the 

problem of stability of the confined hadronic phase and requires a special 

consideration. 

Now we shall only briefly discuss this problem which is, up to our 

present understanding, beyond the qualitative approach being described 

here. Consider the symmetric phase p 
q 

= p--, so that 

z = h?P(P, - Pk P = Pq + Pii (3.13) 

The local fluctuations of the total quark/antiquark density around two 

distinguished levels p = 0 and pO (see Fig. 6) are characterized by a 

sign and a magnitude of the derivative 
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e = 
I 
MCI ’ O; at p = O 

6P -Mq < 0; at p = p. (3.14) 

So, it is unlikely that there could be any collective oscillations around zero 

level of the total local density (stability of the “frozen out” quark-antiquark 

matter or the vacuum). Contrary, the fluctuations around the confined 

phase with non-zero local density p. seem to be very probable. In fact, 

as we can show, these fluctuations are described under some conditions 

by an elliptic type partial derivation equation, what leads to either imaginary 

frequencies or imaginary wave lengths. Thus, there are in general 

exponentially increasing in space-time as well as exponentially decreasing 

ones. Those unwanted exponentially growing solutions which are essentially 

unstable, can be excluded by appropriate boundary conditions. 

In what follows we shall consider only the collective oscillations 

around confined symmetric phase p 
9 = P$ = po/2 which corresponds to 

fluctuations of the relative quark-antiquark local density (p 
q 

- p9), i. e. 

the case (ii). The relevant Hamiltonian is given by: 

z = meffPo + x (P, - P,$~ + $ MqpqpqV2 (3.15) 
0 

where V = (V 
q 

- Vq) is a local field of the quark-antiquark velocity, and 

m eff 
=M 

9 
- g;Po --an effective mass of confined quarks is assumed to be 

negligible (= 0). For small oscillations inside rigid spheric surfaces 

this problem was solved a long time ago. 
11 

The motion equations take 

the form 
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dV 1 M- =- 
q dt pspq 

PO F x -4x grad (p 
q 

- pq) (3. 16) 

and assuming that for the small hydrodynamic oscillations the velocity 

flow to be potential, i.e. 

V = - grad $ (3.17) 

one gets 

; = 2$+ 
q 

(P, - Pq) (3.18) 

Using Eqs. (3. 17) and (3.18) it is easy to rewrite the Hamiltonian in the 

form 

z= :M p 
8 q0 

I 
(grad 4 )2 + & i2 

0 
(3.19) 

which immediately leads to the harmonic oscillations with frequencies 

(3.20 ) 

The values of the wave vector k are determined from the boundary condition 

(atr =a) 

V =0 or 
n 

(r . grad m) = 0 , 1 2 i 

(3. 21) 

Vt =0 or 4 = 0 ) 1 =o 
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where 1 is an angular mOmsbm. The solutions of the problem are of 

the form 

b (Y Yem(cos 0, O)j &kr ) (3.22) 

so the eigenvalues of the wave number (ka)g determined by the roots of 

the Bessel functions (for 1 = 0) or its first derivatives (for P >_ 1). We 

list for convenience a few first solutions for the wave number (ka) p 12 

(see Fig. 7): 

j p(ka) = 0 

j, = O(ka) = 0 

n =1 n = 2 
r r 

P = 1 2. 08 5.95 

1 = 2 3.31 7. 30 

. . . . . .,. I . . . . 

e =o 3.14 I 6.25 
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IV. SPECULATIONS ON COLLECTIVE QUARK 
RESONANCES IN e*e--ANNIHILATION 

AND LEPTON PAIR PRODUCTION PROCESSES 

In spite of the main goal of this paper is the qualitative description 

of the collective resonances in hadronic matter, we would like to speculate 

here on the possible role of this phenomena in explanation of the observed 

+- 
“mini-structure” of the total cross section of e e -anninilation into hadrons 4 

as well as of an excess of prompt leptons in hadron collisions. 
3 

As it is known from SLAC experimental data the total cross section 

@e+e- 
+ hadrons develops two prominent peaks at about 4.1 and 4.4 GeV 

with a possible mini-structure around these regions. 
4 

We shall assume 

here that these two resonance regions centered at ~4.1 and 54.4 GeV 

correspond respectively to the electric monopole (EO) and the quadrupole 

(E2) collective resonances with quantum numbers ir- For constituents 

with spin $ the corresponding couplings (the electric dipole operator) 

are respectively 

-0 

E2: -r(r. ul- TF;. r213 

( ) 3s1 
3 ( 1 D1 

We should notice, however, that for quarks with spin $ the dipole oscillations 

( 1 4P 
++ 

1 
are of pure magnetic type (Ml) with quantum numbers 1 and hence 

cannot be observed in e+e--annihilation or lepton pair production experiments. 
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On the contrary, if there is any necessity of boson-like constituents in 

description of hadronic vacuum fluctuations, the electric dipole collective 

resonances coupled to a photon via 

El: 
1 

( ) P 
1 

could be seen in these experiments. Returning to the discussion of the 

+- 
observed peaks in the total cross section of e e -anninilations, we note 

that the difference in peak energies, which by an assumption is related 

to the difference in the angular momenta, could give an estimation on the 

mass of heavy quarks. Really, from the relation 

E P(P~+ I) 
e=2 = El I 0 = 2M a2 z 300 MeV (4.1) 

9 p=o 

one finds for i/a - 1 GeV that M - 10 GeV. The ratio of the energies 
9 

Ee = 2/ Ep = o = 4.414.1 2 1. 07 (4.2) 

is very close to the ratio of the frequencies of quadropole and monopole 

collective oscillations listed in the previous section (see p. 18) 

(ka 1 p I 2/(ka)p = o - 3. 3113. 24 zz 1.05 (4.3) 

Ln absolute scale the required energies of the observed peaks correspond 

to the following values of a reverse radius of hadronic clusters: 
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1 - x 0.94 GeV = a (1 2) 

(4.4) 

1 
- 
a 

-0-92 GeV (m = 0) 

By the way, the energy of dipole oscillations can be estimated from the 

ratio of frequencies 

WI = 0 +op =2 
= 3.1 

wl = 1 
(4.5) 

that gives E p = 1 N 2. 74 GeV or in terms of the reverse value of the 

1 
radius ; = 0.94 GeV. 

Besides the angular momentum splitting in energy one should expect 

also an appearence of some resonance sub-structure in accordance with 

isotopic spin and hypercharge assignment of collective resonances. This 

“mini-structure” is seen, apparently, in the recent SLAC experiments 

at energies around and above 4 GeV. Obviously, the “hidden” charm gives 

the highest jump in energy, say, 

AE2 2 xm -m 2 
dJ w = 8.97 GeV2 

leading to the new peaks (“charm-mirror”) with the energies 
13 : 

4.1 GeV + 5.08 GeV 

4.4 GeV - 5.32 GeV 

which u-e will denote by E+(EO) and E+(E2). 

(4.6) 

(4.7) 
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The next question is what can one say about widths of collective 

resonances ? An experience of theory of nuclear giant resonance phenomena 

teaches us that this problem is the most hard one for the qualitative hydro- 

dynamical description. Evidently, the total widths of collective resonances 

must exceed an average energy of excitation of separate single quark 

degrees of freedom in a region with a finite size a: 

1 1 AE -- - 
q 2M 

q a2 

Thus, one has 

l- 
tot 

> AE -acu2/M 
9 9 

where 

= 2.28 -2 f2 x 10 (e=2) 

= 2.54 x 10 -2 (I= 0) 

= 5.78 -2 x 10 (P=l) 

So, for example, for the values 

(4.81 

(4.9) 

(4. IO) 

1 -- 1 GeV and M - 10 GeV 
a 9 

one gets for the lower bound of total resonance widths the value 50 MeV. 
14 

More general situations are shown on Fig. 8. 
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It is worth noting that there could exist, in general, collective oscillations 

in hadronic matter with non-zero color and frequencies comparable to 

that of uncolor ones. We emphasize however that colored collective 

resonances should be stable with respect to strong decays because of 

the color conservation and can be observed (if any exists) only through 

their leptonic decays (Obviously, under condition that the electromagnetic 

or weak currents have colored counterpart 
15 

1. Thus the previous estimation 

on resonance widths does not work for colored collective excitations in 

hadronic matter. 

V. “CHROMO-HYDRODYNAMICS” 

In the QCD-Bag theory, 
16 

the most popular at the present time 

approach to quark confinement, there are colored vector gluons confined 

to the same interior as quark and antiquark constituents. Thus, the problem 

arises how gluon degrees of freedom can be incorporated into our scheme? 

Here we shall not introduce a condensed phase for gluons, but shall 

assume a dassical description of gluon field interaction with quark-antiquark 

matter. Apparently, this approach which we shall call, hereafter as the 

“chrome-hydrodynamics”, could be based on the eq. : 

aT 
v v 

= 0 (inside a finite volume V), (5.1) 

for the energy-momentum tensor 



-24- FERMILAB-Pub-761 52-THY 

T 
_ T quark fluids + T gluon fields 

PV PV W 
(5.2) 

with appropriate boundary conditions which ensure confinement. Unfortunately 

there is no theory of a non-abelian field interacting with macroscopic 

medium. 
17 For this reason, we consider here as a first step the chromo- 

hydrodynamic eqs. in the lowest (non-vanishing) order in the quark-gluon 

coupling constant g. Obviously, in this approximation the gluon fields 

become effectively abelian ones like the electromagnetic field. The 

underlying physics is very simple. Assume that there are a number of 

fluctuation regions, where (p 
9 

- pq) # 0, the fluctuations generate the gluon 

fields, say Ea and Ba, satisfying the Maxwell eqs., e. g. 

div Ea = 4ngacp 
q 

- Pq, 

div Ba = 0 , etc. 

(5.31 

where a = 1, 2 I..., 8--the color index. In its turn these fields influence 

the motion of quarks and antiquarks and hence on developing of the fluid 

fluctuations. The relevant notion describing this influence is the so-called 

18 
“ponderomotive” or Lorentz force : 

g = ga(Ea + ; VxBa) 
a 

(5.4) 

In terms of the action principle we have 
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bA = 6 / dt(T + U) + /dr ? (pq6rq - P&q = 0 (5.5) 

where 6cq and Litq are the fields of displacements of quark and antiquark 

positions, and 

1 
T = F”q v2 + pov2 

(5.6) 

u ‘X I dr(p 
9 

- P,? 

Here we use the notations 

bT 
9 

= aR’+ 6Z. pq/po 

(5.7) 

6$ = 6S-dT* pq/po 

where 65 = (85, - 65$, p. = (p, + pq.] = const, so that v = 2 ; V = g . 

From the continuity equations it follows that 

2 = $. +(vgrad)p = -p div V 

for q and q, and hence we can put in the action principle 

dp 
9 

= -p . div 65 
9 9 

(5.9) 

6 Pq 
= -p9 

. div 6$ 
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so that 

6U = x 1 dr(6R * grad)(pq - pqj2 + 

(5.10) 

4x 

PO 
1 

dr pqpqi(6E. grad)(pq - pq) 

Now one obtains the following motion equation for the velocity of relative 

oscillations of the quark and antiquark fluids: 

dV 
dt 

= -$ grad (pq - pq)+$- . F 

9 9 

(5. ii) 

The boundary condition for a spheric shape of the volume V occupied by 

q/q fluids is 

b- * v) = 0 
r =a (5.12) 

so, no effects of surface vibrations are considered. 

By applying the divergence operation to both sides of the eq. (5.11) 

and using the relation 

div V = div (v - v~.) = 
9 

(5.13) 

1 dpq -- - 
pq 

dt (P, - Pq) 

one gets the equation 
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d 1 d 
z- 

-- 
2 dt 

-A+- 
c 

gq ga2] (Pg-Pq) = 0, (5.14a) 

or 

1 d2 
-- +g($$)’ -A+$ g;]ipq-p$ = 0 (5.14b) 

c2 dt2 

2 8x where c = - 
MP 

¶O 
Pq PG. 

We shall assume for small oscillations that 

$2 iie or (v grad)p << at (5.15) 

which means 

TV << 1 
9 

(5.16) 

where TV 
9 

is an average path of particles during one period of oscillations 

7 - I/W, and e --a length on which p 
sl8 

varies more or less considerably. 

The resulting equation for linearized hydrodynamical oscillations 

of the quark and antiquark fluids interacting with gluon fields takes the 

form of the wave equation, e. g. 

i a2 A-+ - 2 2 

c at2 
-c II 6P = 0; bp = (p 

q 
- p$ (5.17) 

112 
(0) (0) - 

pq % is an effective velocity and p = -- 

an effective mass of quanta of the collective excitations. For the frequency 

of the collective oscillations we get 
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o q (q !$%j”’ . (k2 +$r2 (5.ig, 
where the values of k2 are determined by the boundary condition 

r -0 
0 = tr . gradj6p --t 

jet 

r =a 
j0 

(ka) q 0 e>l 
(5.19) 

(ka) =0 e=O 

By using x pa/M 
q 

‘1 and pq = pq = po/ 2 as it should be for confined 

hadronic phase we get finally 

(5.20) 

where 

2 4ea2 

wp = Mq ‘0 (5.21) 

It is interesting to note that the equation determining wp is the well-known 

formula for the frequency of collective oscillations in plasma I9 (here the 

“plasma” made of the massive quarks and antiquarks interacting through 

the gluon fields! 1. This amusing analogy brings an idea of a possible 

existence of the new state of hadronic matter, namely the gas of free 

(unconfined) quarks and antiquarks interacting with the colored gluon 

fields emboded in the confined hadronic phase. Obviously, no such a 

“plasma” type state can be realized in the vacuum. 
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Now we estimate the value of the hadronic “plasma” frequency op. 

First of all, we should take into account the color group structure of the 

quark-gluon coupling constant. We guess that this can be done by substitution 

ga2-w f SPm- (g;: Aaj2 = g,2C2c010r 

where C 
color 

2 
is the quadratic Casimir operator for the SU3’-color 

group, so that 

c2 
color 

(single quark ) = 16/3 

Here g,--the rationalized coupling constant- -is to be taken in the Gauss 

units, so that 

g::2 = g2/4n 

where g is the usual quark-gluon coupling constant determined by the 

Lagrangian gTAayll@ua. One has now 

2 fz2Po 
UP = - M c2 

color = 216 
( ) 

q 4rr Mqa3 

This can be compared with the energy of self-interaction of a quark through 

the gluon field: 

color 

a 

which for i/a z 0.94 GeV and g2/4ir - 1 gives AM - 5 GeV. By using 



FERMILAB-Pub-761 52-THY 

the Eq. ( 4.9 1 one gets the relation 

2 
wP 

= 6l-AM 

2 
which gives under the previous conditions the value w - r. 30 GeV or 

P 

o - 1.2 GeVfor F-50 MeV. 
P 

Note Added: During the completion of this work, a paper by J. W. Moffat 

(University of Toronto preprint 1 was called to my attention in which a 

“quark-nucleus” shell model of hadrons is proposed on the basis of a 

generalization of the empirical nucleus mass formula with the symmetry- 

energy term. This paper does not consider the collective structure of 

multiquark hadronic states. 
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FIGURE CAPTIONS 

Fig. 1: 

Fig. 2: 

The photoneutron cross section of 0 up to 30 MeV, [taken 

from Bramblett, Caldwell, Harvey, Fultz (64)]. 

A schematic representation of giant resonances as hydrodynamic 

oscillations. 

Fig. 3: Scheme of collective multipole vibrations of nuclear matter 

when spin (s) and isospin (i) are taken into account (modes 

of the generalized Goldhaber-Teller model): (a) EO: (I) i 

mode, (II) si, (III) 8, (IV) protons and neutrons in phase; 

(b) El: (I) i mode, (II) si, (III) s; (c) E2: (I) i mode, 

(II) si, (III) s, (IV) in phase. 

Fig. 4: (a) Schematic representation of hadron matter production 

process in one-photon e+e--annihilation. (b) Illustration 

to the “hard-sphere” model: quark-antiquark splitting in 

uniform electric field of the virtual photon in the center of 

the mass system. 

Fig. 5: Graphic demonstration of the energy balance of two potentials: 

1 2 

Fig. 6: 

one of the restoring force U = ,ur and another of the quark 

ionization of hadronic matter U. ioniz. = Uo( 6nq + bnq) = 

Uopd v. 

Pictures illustrating the different phases of hadronic matter 

and different types of fluctuations: (1) around quarklantiquark 

and gluon vacuum, (2) around confined hadronic phase. The 
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Fig. 7: 

Fig. 8: 

sign of the derivative 627 b p characterizes whether the 

fluctuation is being stable or not. 

The analytic expressions and the graphics of the first few 

Bessel functions for n = e = 0, 1 and 2. 
11 

The illustration of the relations between the energies of the 

collective resonances for modes E 0 (L = O), El (L = 1) and 

E2 (L = Z), the unconfined quark mass Mq and the lower 

bound on the total resonance widths rmin. The arrows 

indicate the positions of the collective resonances for the 

particular value of a size of hadronic system a= 0.2 fm. 
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